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Abstract
We theoretically study the electron transport property for a semiconductor
quantum wire irradiated under a longitudinally polarized electromagnetic field
within a finite range. We obtain the non-perturbative solutions of the single-
electron time-dependent Schrödinger equation both inside and outside the field-
irradiated region of the wire according to the Floquet theorem. A general
infinite matrix equation which determines the Floquet scattering coefficients is
derived straightforwardly through the wavefunction matching scheme at the two
interfaces between regions with and without field irradiation. The examples of
numerically calculated transmission dependence on the electron incident energy
for different field parameters exhibit both Fano and Rabi resonances, and the
structure of the transmission is sensitive to the field parameters of amplitude
and frequency as well as the irradiation length.

1. Introduction

Since the increasingly progressive arts and crafts of nano-technologies allow researchers
to realize some real mesoscopic systems in the laboratory, mesoscopic physics has been
extensively studied in recent years. In the fabrication process one can confine a two-
dimensional electron gas (2DEG) in an ultra-narrow channel on a GaAs/AlxGa1−x As
heterojunction by applying gate-controlled confinement potential and obtain a two-dimensional
quantum point contact (quantum wire) [1] or even an ideal one-dimensional interacting electron
system [2]. Depending on the nature of the materials, quantum wires with a length up to a few
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microns may still be comparable to the Fermi wavelength of electrons. In the ballistic regime
and at low temperatures the quantum coherent effect will dominate the electron transport
properties of these mesoscopic systems. One of the most important features is that, as the
width of a quantum wire varies, the conductance shows a histogram structure and each step
has a height of 2e2/h or integer multiples of it [3].

The electron transport properties of a quantum wire formed on a 2DEG can be affected
by many factors. The presence of disorder in a quantum wire generally leads to a suppression
of the conductance plateaus below integer values [4], and the interaction of electrons induces
transport anomalies [5]. However, there has been growing interest in the time-dependent
transport for mesoscopic systems in recent years (see, for example, the recent review
article [6] and references therein), such as those in the presence of a time-dependent potential
modulation [7] for quantum wires and quantum pumping [8] for quantum dots. Furthermore,
many features have been observed [9] experimentally and predicted theoretically for both
quantum wires [10–14] and quantum wells [15, 16] when the system is irradiated under an
external electromagnetic (EM) field. The technique of applying an external field is of particular
interest, since no additional current and voltage probes have to be attached to the sample that
may disturb the system’s properties.

In this paper, we theoretically study the multi-photon processes of a quantum wire
irradiated under a longitudinally polarized EM field. The longitudinally polarized field
results in intrasubband transitions [13, 14], whereas a transversely polarized field results in
intersubband transitions [10–12]. Both types of transition come from absorbing/emitting
photons of quantum confined electrons. However, when an external longitudinally polarized
field irradiates a finite range of a quantum wire, the displacement symmetry along the wire
is violated so that the longitudinal momentum is not a conservative quantity and reflection
must arise in general. The transport for a quantum wire under a longitudinally polarized
EM field has been studied by a nonequilibrium Green function approach [13], where the
interaction of the confined electron with a longitudinal photon has been described in a dipole
approximation. However, the authors have only considered the particular case of a two-
sublevel wire and the final results for the conductance or current must be time-averaged.
This system has been also studied [14] by using a vector potential to represent the EM field,
but calculation in this method allows only single incident electron mode. Furthermore, a
common simplification in this system is to assume that a uniform oscillation field exists
for x-independent space [7]. In this paper we will use the Floquet scattering approach to
solve the single-particle time-dependent Schrödinger equation, in which the interaction term
is described in a dipole approximation. After matching the wavefunctions at the interfaces
between regions with and without field irradiation, we derive straightforwardly some infinite
matrix equations which describe the multi-photonsideband transitions for the system. Then we
numerically calculate the conductance as a function of electron incident energy with different
field amplitude, frequency and irradiating length, respectively.

The Floquet scattering theory has had some success in treating a laser-driven quantum
well system with dipole-type potentials [15, 16]. The quantum well situation is similar to a
quantum wire under a longitudinally polarized EM field irradiation except for the difference in
the boundary (interface) condition between the two cases. So we extend the Floquet scattering
method to our quantum wire time-dependent problem; to our knowledge this extension has
seldom been done previously [14].

The paper is arranged as follows. In section 2 the time-dependent Schrödinger equation
for the system is derived and its Floquet scattering solutions in the different regions of the
quantum wire are presented. Then the multi-photon sideband scattering equations relating to
the scattering matrix are obtained by matching the solutions at the two interfaces. In section 3
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we present respectively some numerical examples of the conductance as a function of incident
electron energy for different field amplitude, frequency and length, and discuss the numerical
results. And finally, section 4 presents a summary of the paper.

2. Model and method

The model system under investigation is an ideal long quantum wire (electron waveguide)
adiabatically connecting two reservoirs at each end. The x-axis is longitudinally along the
wire, and the y-axis is in the transverse direction. A longitudinally polarized external EM
field with wavevector along the z-axis irradiates a finite range (0 � x � L) of the wire in an
unspecified way. The electric component of the field is described by

�E(t) = ε cos(ωt)θ(L/2 − |x |)x̂, (1)

where ε and ω are the amplitude and angular frequency of the field, respectively, x̂ is the unit
vector in the x direction (polarized direction), and θ(·) is the step function.

2.1. Time-dependent Schrödinger equation

When the range of the irradiating field L is assumed to be comparable with the phase-breaking
length of electrons, the entire transmission process is coherent and can be described by a
time-dependent Schrödinger equation. The two reservoirs at both ends of the quantum wire
can be taken to be free from the time-modulation effects so that the distribution of the
incident electrons is well determined. Therefore, at low temperature and in the ballistic
regime we adopt the effective-mass free-electron model which neglects the charging effect
and imperfections. Hence in the dipole approximation [16] the single-particle time-dependent
Schrödinger equation reads

ih̄
∂

∂ t
�(x, y, t) =

[
− h̄2

2m∗

(
∂2

∂x2
+
∂2

∂y2

)
+ eεx cos(ωt)θ(L/2 − |x |) + v(y)

]
�(x, y, t), (2)

where m∗ and e are the effective mass and the charge of an electron, respectively, and v(y) is
in the form of either a hard-wall potential or a parabolic one which confines electrons to the
wire and to the reservoirs. In this paper, we use a parabolic potential v(y) = ω2

0 y2 to define
the quantum wire, where ω0 is the strength of confinement.

The dipole-type finite-range time-dependent potential in equation (2) is uniform in the
transverse direction and does not induce intersubband transitions, leaving the subband index
unchanged. Thus, for the nth subband electron incident along the x-direction the scattering
wavefunction can be written as

�(x, y, t) = ψ(x, t)φn(y), (3)

whereφn(y) is the transverse wavefunction corresponding to the nthsubband with energy levels
εn = (2n +1)h̄ω0. Inserting equation (3) into (2), we obtain a time-dependent one-dimensional
Schrödinger equation

ih̄
∂

∂ t
ψ(x, t) =

[
− h̄2

2m∗
∂2

∂x2
+ V (x, t)

]
ψ(x, t), (4)

where V (x, t) = [εn + eεx cos(ωt)]θ(L/2 − |x |) is the effective longitudinal scattering
potential which is time dependent with the period of T = 2π/ω. This type of equation has
been used in describing many aspects [17] of interaction of matter with an EM field and has
been treated by time-dependent perturbation theory [18–20] for driving a quantum well system.
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2.2. Floquet scattering solution

The non-perturbative general solution of equation (4) in the range of |x | < L/2 may be
written [15, 16] as a superposition of Floquet states

ψ(x, t) = e−i(E+ e2ε2

4m8ω2 )t/h̄
∞∑

l=−∞

[
aleikl (x−eε cosωt/m∗ω2) + ble−ikl (x−eε cosωt/m∗ω2)

]

× exp

[
−i

(
lωt +

eεx sinωt

h̄ω
− e2ε2 sin 2ωt

8h̄m∗ω3

)]
, (5)

where al and bl are the two scattering coefficients to be determined, andψ(x, t) is of the form
exp(−iEFt/h̄)u(t) with u(t) = u(t + 2π/ω) which is the characteristic for a Floquet state. A
Floquet state is the analogue to a Bloch state when replacing a spatially periodic potential with
a time periodic one. The quasimomentum of the Bloch state becomes the quasienergy EF of
the Floquet state. From equation (5) we find the Floquet eigenenergy EF = E + e2ε2/4m∗ω2,
where E is the total energy constant. The sideband wavevectors kl in solution (5) satisfy the
relation

h̄2k2
l /2m∗ = E − εn + lh̄ω. (6)

Using the identities exp(−ix sinωt) = ∑
m Jm(x) exp(−imωt), exp(−ix cosωt) =∑

m(−i)m Jm(x) exp(−imωt), and Jm(−x) = (−1)m Jm(x), where Jm(x) is the Bessel function
of the first kind, solution (5) can be rewritten as

ψ(x, t) =
∞∑

m=−∞

∞∑
l=−∞

∞∑
α,β=−∞

(−i)α
[
aleikl x + (−1)αble−ikl x

]

× Il(α, β)Jm−l−α+2β

(
eεx

h̄ω

)
e−iEm t/h̄ , (7)

where we have used the abbreviation

Il(α, β) = Jα

(
eεkl

m∗ω2

)
Jβ

(
e2ε2

8h̄m∗ω3

)
, (8)

and Em = EF + mh̄ω are multi-photon sidebands with energy spacing of h̄ω.
Since electrons incident into the field irradiated region will be scattered inelastically into

Floquet sidebands, the wavefunctions outside the scatter region must consist of multiple Floquet
sidebands in order to match the continuous condition at interfaces of x = ±L/2. The potential
in both sides of the wire is zero, so we simply assume that the incoming and outgoing waves
in both sides are superpositions of an infinite number of sidebands with energy spacing of h̄ω.
Therefore, the wavefunctions in these two free particle regions are

ψ(x, t) =
∞∑

m=−∞
(Ai

meiqm x + Ao
me−iqm x)e−iEm t/h̄ , x < −L/2 (9)

and

ψ(x, t) =
∞∑

m=−∞
(B i

me−iqm x + Bo
meiqm x)e−iEm t/h̄ , x > L/2 (10)

respectively. Here Ai
m and B i

m are the probability amplitudes of the incoming waves from left
or right, respectively, while Ao

m and Bo
m are those of the outgoing waves. The incoming waves

are divided into different zones with index m: Em = E0 + mh̄ω, where E0 ∈ [h̄ω0, 3h̄ω0) is
the Floquet energy of the propagating mode with lowest energy, h̄2q2

m/2m∗ = E0 − εn + mh̄ω.
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2.3. Scattering coefficients

The Floquet eigenenergy EF in equation (7) can be determined up to an arbitrary integer
multiplied by h̄ω; shifting EF by mh̄ω does not change the wavefunction ψ(x, t) due to
Em = EF + mh̄ω. For convenience, we choose EF within the lowest zone, EF = E0.

The wavefunctions (7)–(10) and their first derivatives must be continuous at the interfaces
of x = −L/2 and X = L/2, respectively. These conditions lead to the following infinite
equations after some algebraic operations:

∞∑
l=−∞

∞∑
α,β=−∞

(i)α
{
(−1)(m−l)

[
i(qm + kl)Jm−l−α+2β

(
eεL

2h̄ω

)
+

(
eε

2h̄ω

)(
Jm−l−α+2β+1

(
eεL

2h̄ω

)

− Jm−l−α+2β−1

(
eεL

2h̄ω

))]
e−ikl L/2 ± (−1)α

[
i(qm − kl)Jm−l−α+2β

(
eεL

2h̄ω

)

+

(
eε

2h̄ω

)(
Jm−l−α+2β+1

(
eεL

2h̄ω

)
− Jm−l−α+2β−1

(
eεL

2h̄ω

))]
eikl L/2

}
Il(α, β)

× [
al ± (−1)(m−l)bl

] = 2iqme−iqm L/2(Ai
m ± B i

m). (11)

If the incoming amplitudes Ai
m and B i

m are given, then we can use equation (11) to
determine the coefficients al and bl . Therefore, the amplitudes of the outgoing waves are
given by

Ao
m =

∞∑
l=−∞

∞∑
α,β=−∞

(−i)α
[
ale−ikl L/2 + (−1)αbleikl L/2

]
Jm−l−α+2β

(−eεL

2h̄ω

)

× Il(α, β)e
−iqm L/2 − Ai

me−iqm L , (12)

and

Bo
m =

∞∑
l=−∞

∞∑
α,β=−∞

(−i)α
[
ale

ikl L/2 + (−1)αble
−ikl L/2] Jm−l−α+2β

(
eεL

2h̄ω

)

× Il(α, β)e−iqm L/2 − B i
me−iqm L . (13)

After these quantities of interest are obtained, a Landauer–Büttiker-type [19] scattering matrix
can be constructed to study the quantum transport property of the system. In practice we can
use a truncated version of equation (11) to obtain its numerical solution with required accuracy.

2.4. Scattering matrix

The outgoing wave amplitude equations (12) and (13) can be expressed in matrix form:(
Ao

Bo

)
= S

(
Ai

B i

)
, (14)

where Ai, B i and Ao, Bo are the incoming and outgoing (including the associated evanescent
Floquet sidebands) amplitude vectors, respectively. The scattering matrix S consists of all
the probability amplitudes which connect the incoming wave amplitude vectors Ai and B i to
outgoing wave amplitude ones Ao and Bo (see the appendix).

If we keep only the propagating modes, then we obtain the scattering matrix S̄ which
satisfies (

Āo

B̄o

)
= S̄

(
Āi

B̄ i

)
, (15)
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and can be determined by the transmission and reflection amplitudes for the propagating modes

S̄ =
(

R̄ T̄ ′
T̄ o R̄′

)
=




r00 r01 · · · t ′
00 t ′

01 · · ·
r10 r11 · · · t ′

10 t ′
11 · · ·

· · · ·
t00 t01 · · · r ′

00 r ′
01 · · ·

t10 t11 · · · r ′
10 r ′

11 · · ·
· · · ·



, (16)

where rmn and tmn are the reflection and transmission amplitudes, respectively, for
modes incident from the left; r ′

mn and t ′
mn are similar quantities for modes incident from

the right. Here m, n ∈ [0,∞] since matrix S̄ contains only the reflection and transmission
amplitudes of the propagating modes. Elements such as t−1,0, r−1,0 in matrix S correspond to
probability amplitudes describing an electron with incident energy E0 being scattered into the
evanescent mode E−1.

From the scattering matrix one can obtain the total transmission coefficient

T =
∞∑

n=0

∞∑
m=0

qm

kn
|tmn|2. (17)

If we consider a single electron wave incident from one direction (say the left) with a fixed
Fermi energy E0 and wavevector q0, there is only one element, Ai

0, that is nonzero in the
incoming amplitude vector, and the transmission coefficient T calculated from equation (23)
involves only tn0 (m = 0 and n varies over all the transmitted propagating sidebands) [14]. If
the incident energy belongs to a higher energy zone m [(2m+1)h̄ωy � Ein < (2(m+1)+1)h̄ωy],
we use tml in the corresponding column in the S matrix. According to the Landauer–Büttiker
formula [19], the total conductance of the quantum wire is

G = 2e2

h
T . (18)

The conductance G can be measured in experiments [1, 2, 9].

2.5. Transmission calculation

The algebraic equation (11) for the coefficients al and bl can be divided into two components
for odd and even order m, respectively. However, the odd m component contribution is at least
one order less than that of the even m one through our analysis, and can be neglected. To
simplify the calculation work without loss of the basic physics of the transmission behaviour,
here we reduce the even m component of equation (11) as

∞∑
l=−∞

∞∑
α,β=−∞

{
(i)α(−1)l

[
i(qm + kl)Jm−l−α+2β

(
eεL

2h̄ω

)
+

(
eε

2h̄ω

)(
Jm−l−α+2β+1

(
eεL

2h̄ω

)

− Jm−l−α+2β−1

(
eεL

2h̄ω

))]
e−ikl L/2 ± (−i)α

[
i(qm − kl)Jm−l−α+2β

(
eεL

2h̄ω

)

+

(
eε

2h̄ω

)(
Jm−l−α+2β+1

(
eεL

2h̄ω

)
− Jm−l−α+2β−1

(
eεL

2h̄ω

))]
eikl L/2

}
Il(α, β)

× [
al ± (−1)lbl

] = 2iqme−iqm L/2(Ai
m ± B i

m). (19)

To solve equation (19), let us first introduce some relevant matrices whose elements are
defined in the following way:
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(Q±
s )ml =

∞∑
α,β=−∞

{
(i)α(−1)l

[
i(qm + kl)Jm−l−α+2β

(
eεL

2h̄ω

)
+

(
eε

2h̄ω

)(
Jm−l−α+2β+1

(
eεL

2h̄ω

)

− Jm−l−α+2β−1

(
eεL

2h̄ω

))]
e−ikl L/2 ± (−i)α

[
i(qm − kl)Jm−l−α+2β

(
eεL

2h̄ω

)

+

(
eε

2h̄ω

)(
Jm−l−α+2β+1

(
eεL

2h̄ω

)
− Jm−l−α+2β−1

(
eεL

2h̄ω

))]
eikl L/2

}
Il(α, β),

(20)

(Qr )ml = 2iqme−iqm L/2δm,l, (21)

(Q±
1 )ml =

∞∑
α,β=−∞

e−i(qm+kl )L/2(∓i)α(±1)l Jm−l−α+2β

(−eεL

2h̄ω

)
Il(α, β), (22)

(Q±
2 )ml =

∞∑
α,β=−∞

e−i(qm−kl )L/2(∓i)α(±1)l Jm−l−α+2β

(−eεL

2h̄ω

)
Il(α, β), (23)

(Qi )ml = e−iqm Lδm,l, (24)

C±
l = [

al ± (−1)(−l)bl
]
. (25)

Using the above definitions, we obtain the following matrix equation for the Floquet scattering
matrix S (see the appendix):(

Ao

Bo

)
=

(
QAA QAB

QB A QB B

) (
Ai

Bi

)
= S

(
Ai

Bi

)
. (26)

Each element Smn of matrix S gives the probability amplitude that the electron is scattered
from Floquet sideband n to sideband m [m, n ∈ (−∞,∞)]. If we keep only the propagating
modes [m, n ∈ [0,∞)], we then extract it from S matrix to obtain S̄ as equation (21).

The finiteness in the range of the applied EM field breaks the translational invariance,
and hence allows the coherent inelastic scattering not to conserve the longitudinal momentum.
On the other hand, the uniformity of the field in the transverse direction does not induce
intersubband transitions and so each occupied subband contributes independently to the total
transmission amplitudes. Thus it suffices for our purposes here to present the transmission
amplitude of only one subband, which we take to be the lowest one.

3. Numerical results and discussion

In our numerical examples, the quantum wire is taken to be that in a high mobility
GaAs–AlxGa1−x As heterostructure [1, 2] with a typical electron density n ∼ 2.5 × 1011 cm−2

and m∗ = 0.067m0, where m0 is the free electron mass. Correspondingly, we choose an
energy unit E∗ = h̄2k2

F/(2m∗) = 9 meV, a length unit a∗ = 1/kF = 79.6 Å, a frequency unit
ω∗ = E∗/h̄ = 13.6 THz, and the field amplitude ε in units of 11.3 kV cm−1. In the following,
the dependence of the electron transmission probability T on the incident electron energy E is
more conveniently plotted as the dependence of T on X , where the integral value of X = E/ε
gives the number of propagating channels (ε = 2h̄ω0 is the subband energy-level spacing).

First, we present the numerically calculated T dependence on X in figures 1(a)–(c) for
three different field amplitudes of ε = 0.0025 (�28.3 V cm−1), 0.005 (�56.5 V cm−1),
0.015 (�169.7 V cm−1), respectively. Here we have fixed the field frequency ω = 0.042
(�0.574 THz, which is typical for current experiments [21]) and the length of the field
irradiation L = 60 (�0.5µm), and chosen the strength of the lateral confinement h̄ω0 = 0.035
for the quantum wire such that the subband energy-level spacing ε = 0.07. Besides the
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Figure 1. Transmission probability T as a function of X for different field amplitudes of (a) ε =
0.0025 (�28.3 V cm−1), (b) ε = 0.005 (�56.5 V cm−1), and (c) ε = 0.015 (�169.7 V cm−1).
The field frequency and irradiation length are chosen to be ω = 0.042 and L = 60 (�0.5 µm),
respectively, and the confinement strength is ωy = 0.035.

incident channel E = E0, Floquet sidebands both above and below E0 are taken into account:
Em = E0 + mh̄ω with m = 0,±2,±4.

From figure 1 we can see the variation of transmission T between 0 and 1, in which the
variation pattern depends on the field amplitude. With the relatively small field amplitude
ε = 0.0025 shown in figure 1(a), the transmission pattern shows several transmission dip
structures. According to equation (6) we find that the sideband wavevector kl (l � 1)
always corresponds to a propagating mode within our numerical interval, but k0 begins to be
a propagating state and requires X ∼ 0.525. In this case the quantum wire ensures that there
exists a quasi-bound state, which results in an asymmetric Fano resonance where a sharp dip is
followed by a peak. As X increases, the sideband wavevector k−1 is a propagating state when
X > 0.64. Therefore, there is also a Fano dip associating with another quasi-bound state. We
can also identify two other Fano resonances where a peak is followed by a sharp dip at X = 1.15
and 1.38, respectively, which may result from higher sidebands. In addition to the asymmetric
Fano dips for the transmission, there exist symmetric dip structures at X � 0.76, 0.98, and
1.25, respectively, in figure 1(a). This phenomenon can be interpreted as a Rabi oscillation
interference effect between different sidebands. Furthermore, with an intermediate value of
the field amplitude ε = 0.005 shown in figure 1(b), there are only a few symmetric dips at
X � 0.65, 0.68, 0.88, 1.17, 1.32 and 1.45, respectively. The only asymmetric nonzero dip
followed by a peak at X = 1.23 may be identified as a Fano resonance. However, as the
amplitude of field increases to a relative large value of ε = 0.015, as shown in figure 1(c) the
transmission remains at zero until X ∼ 0.81. The phenomenon can be interpreted as follows.
The sideband wavevector k1 corresponds to an evanescent state when X < 0.81, so there
is no propagating mode in the field-irradiated region and the transmission equals zero. As
X > 0.81, a new channel begin to open and it enhances the reflection of electrons out of the
field-irradiated region, and the transmission begins to oscillate.

From the numerical examples of figure 1 we conclude that under certain frequency field
irradiation the transmission dependence on the incident energy of a quantum wire is sensitive to
the field amplitude. The transmission shows mainly asymmetric Fano resonance structure for a
relatively small amplitude, while for a relatively larger amplitude it displays a pure symmetric
Rabi oscillation pattern. It seems that for the intermediate value of the field amplitude of
ε = 0.015 the transmission shows a transition state from Fano resonance to Rabi oscillation
but with a maximum average probability. In the remaining part of this section we will use an
intermediate value of the field amplitude case (figure 1(b)) as a comparative reference.

Next, we present the numerically calculated T dependence on X in figures 2(a)–(c) for
three different field frequencies of ω = 0.028 (�0.383 THz), 0.042 (�0.574 THz) and 0.421
(�5.75 THz), respectively. Here we have chosen ε = 0.005, and the field irradiation length
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Figure 2. Transmission probability T as a function of X for different field frequencies (a)ω = 0.035
(�0.478 THz), (b)ω = 0.042 (�0.574 THz), and (c)ω = 0.049 (�0.669 THz). The field amplitude
is chosen to be ε = 0.005, and the irradiation length and the confinement strength are the same as
those in figure 1.
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Figure 3. Transmission probability T as a function of X for different field irradiation lengths of
(a) L = 30 (�0.25 µm); (b) L = 60 (�0.5 µm), and (c) L = 120 (�1 µm). The field frequency is
ω = 0.042, and the field amplitude and the confinement strength are the same as those in figure 2.

and the confinement strength are the same as those in figure 1. With a relatively small field
frequency as shown in figure 2(a), the transmission pattern is more symmetric than that in
figure 2(b) with an intermediate value of the field frequency. However, as shown in figure 2(c),
the transmission remains almost zero until X ∼ 0.81, as that in figure 1(c), with the same
physical reason. But it shows clearly a Fano resonance at X � 1.38 where a sharp peak is
followed by a dip. This is also from a transition between a propagating state and a quasi-bound
state.

Finally, we investigate the influence of the field irradiation length on the transmission.
We present the calculated T as a function of X in figures 3(a)–(c) for different field irradiation
lengths of L = 30 (�0.25 µm), 60 (�0.5 µm) and 120 (�1 µm), respectively. Here we have
chosen the field frequency ω = 0.042, and the field amplitude is the same as that in figure 2.
We note that for a relatively short irradiation length of L = 30 the transmission exhibits slow
oscillation with a few wide dips as shown in figure 3(a). This may result mainly from the pure
Rabi oscillations due to the short L. Interestingly, as shown in figures 3(b) and (c), with a
longer L the transmission pattern oscillate more rapidly while the dip structures become more
pronounced and the widths of the dips are narrower. So in the case of long L both Fano and
Rabi resonance may be effective.

Lastly, we discuss the possibility of the experimental observation of the above effects
based on our model system. The experimental setup based on a 2DEG for this kind of
measurement has been proposed in [14], which my be suitable for our purpose. However,
two requirements need to be fulfilled for observation. First, the bolometric effect due to
absorption of photons in the quantum wire has to be suppressed or totally eliminated, because
the transport characteristics may be affected by the bolometric effect when the wire is exposed
to the incident EM field. Second, in order to increase the coupling between the electrons and
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the photons by breaking the longitudinal translational invariance, the length of the region L
acted on by the EM field needs to be shorter than the wavelength of the incident field. Thus
the coupling between the conduction electrons and the photon field can be much enhanced for
the observation.

4. Summary and conclusion

In summary, we have presented a generic Floquet scattering approach that allows us to obtain
the Floquet eigenenergy and the scattering matrix for a quantum wire under a longitudinally
polarized EM field irradiation within a finite range. The electron transmission dip structures
result from the interaction of electrons with the electromagnetic field. Quasi-bound states
can serve as an electron reservoir when an electromagnetic field is applied and electrons can
drop there from the propagating modes by photon emission, in which form a Fano resonance.
Rabi oscillations and interference effects of sidebands result in the abundance structure of
the transmission. But the structure of the transmission is sensitive to the field amplitude
and frequency as well as the irradiation length. Fano resonance may be used to ‘probe’ the
semiconductor energy spectrum, and measure mesoscopic system parameters such as width
and band structure. In addition, this sharp peak–dip resonance pattern (sometimes only a dip
appears) also allows sensitive control of the transport property and may be useful for designing
fast response switching quantum heterostructures. On the other hand, one may also sensitively
control the transport of a heterostructure through the external electromagnetic field parameters.
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Appendix. Derivation of the Floquet S matrix

In this appendix we show how to construct the Floquet S matrix using matrix format. According
to the definitions of equations (20)–(25), equation (19) can then be expressed in matrix form:

Q±
s · C± = Qr · (Ai ± Bi). (A.1)

When the state matrix Q±
s is not singular, we can take the inverse and the coefficient vector

C± becomes

C± = (Q±
s )

−1 · Qr · (Ai ± Bi), (A.2)

where the coefficients al and bl are given by al = (C+
l + C−

l )/2 and b′
l = (−1)lbl =

(C+
l − C−

l )/2. The coefficient vectors are given by

a = 1
2 (C

+ + C−) = 1
2

[
(Q+

s )
−1 · Qr · (Ai + Bi) + (Q−

s )
−1 · Qr · (Ai − Bi)

]
= 1

2

[
(Q+

s )
−1 + (Q−

s )
−1] · Qr · Ai + 1

2

[
(Q+

s )
−1 − (Q−

s )
−1] · Qr · Bi, (A.3)

and

b′ = 1
2 (C

+ − C−) = 1
2

[
(Q+

s )
−1 · Qr · (Ai + Bi)− (Q−

s )
−1 · Qr · (Ai − Bi)

]
= 1

2

[
(Q+

s )
−1 − (Q−

s )
−1] · Qr · Ai + 1

2

[
(Q+

s )
−1 + (Q−

s )
−1] · Qr · Bi. (A.4)
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Now rewrite equations (12) and (13) for the outgoing wave amplitude vectors in matrix form:

Ao = Q+
c1 · a + Q−

c2 · b′ − Qi · Ai

= ( 1
2

{
Q+

c1 · [
(Q+

s )
−1 + (Q−

s )
−1] + Q−

c2 · [
(Q+

s )
−1 − (Q−

s )
−1]} · Qr − Qi) · Ai

+ ( 1
2

{
Q+

c1 · [
(Q+

s )
−1 − (Q−

s )
−1] + Q−

c2 · [
(Q+

s )
−1 + (Q−

s )
−1]} · Qr ) · Bi

≡ QAA · Ai + QAB · Bi, (A.5)

Bo = Q+
c2 · a + Q−

c1 · b′ − Qi · Bi

= ( 1
2

{
Q+

c2 · [
(Q+

s )
−1 + (Q−

s )
−1] + Q−

c1 · [
(Q+

s )
−1 − (Q−

s )
−1]} · Qr ) · Ai

+ ( 1
2

{
Q+

c2 · [
(Q+

s )
−1 − (Q−

s )
−1] + Q−

c1 · [
(Q+

s )
−1 + (Q−

s )
−1]} · Qr − Qi ) · Bi

≡ QB A · Ai + QB B · Bi. (A.6)

Therefore, combining these two equations results in equation (26).
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